This project has retired. For details please refer to its Attic page.

By default, the similar product template uses implicit preference, such as "view" event.

To handle explicit preference, such as "rating" given to item by users, you can customize the template. Higher "rating" means a stronger indication that the user likes the item.

This examples demonstrates how to modify similar product template to use "rate" event as Training Data. You can find the complete modified source code here.

Modification

DataSource.scala

In DataSource, change ViewEvent case class to RateEvent. Add rating: Double is added to the RateEvent.

Change

1
case class ViewEvent(user: String, item: String, t: Long)

to

1
2
// MODIFIED
case class RateEvent(user: String, item: String, rating: Double, t: Long)

Modify TrainingData class to use rateEvent

1
2
3
4
5
6
7
8
9
10
11
12
class TrainingData(
  val users: RDD[(String, User)],
  val items: RDD[(String, Item)],
  val rateEvents: RDD[RateEvent] // MODIFIED
) extends Serializable {
  override def toString = {
    s"users: [${users.count()} (${users.take(2).toList}...)]" +
    s"items: [${items.count()} (${items.take(2).toList}...)]" +
    // MODIFIED
    s"rateEvents: [${rateEvents.count()}] (${rateEvents.take(2).toList}...)"
  }
}

Modify readTraining() function of DataSource to read "rate" events (commented with "// MODIFIED"). Replace all ViewEvent with RateEvent. Replace all viewEventsRDD with rateEventsRDD. Retrieve the rating value from the event properties:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  override
  def readTraining(sc: SparkContext): TrainingData = {
    ...

    // get all "user" "rate" "item" events
    val rateEventsRDD: RDD[RateEvent] = PEventStore.find( // MODIFIED
      appName = dsp.appName,
      entityType = Some("user"),
      eventNames = Some(List("rate")), // MODIFIED
      // targetEntityType is optional field of an event.
      targetEntityType = Some(Some("item")))(sc)
      // eventsDb.find() returns RDD[Event]
      .map { event =>
        val rateEvent = try { // MODIFIED
          event.event match {
            case "rate" => RateEvent( // MODIFIED
              user = event.entityId,
              item = event.targetEntityId.get,
              rating = event.properties.get[Double]("rating"), // ADDED
              t = event.eventTime.getMillis)
            case _ => throw new Exception(s"Unexpected event ${event} is read.")
          }
        } catch {
          case e: Exception => {
            logger.error(s"Cannot convert ${event} to RateEvent." + // MODIFIED
              s" Exception: ${e}.")
            throw e
          }
        }
        rateEvent // MODIFIED
      }.cache()

    new TrainingData(
      users = usersRDD,
      items = itemsRDD,
      rateEvents = rateEventsRDD // MODIFIED
    )
  }

Preparator.scala

Modify Preparator to pass rateEvents to algorithm as PreparedData (Replace all ViewEvent with RateEvent. Replace all viewEvents with rateEvents)

Modify Preparator's parpare() method:

1
2
3
4
5
6
7
8
9
  ...

  def prepare(sc: SparkContext, trainingData: TrainingData): PreparedData = {
    new PreparedData(
      users = trainingData.users,
      items = trainingData.items,
      rateEvents = trainingData.rateEvents) // MODIFIED
  }

Modify PreparedData class:

1
2
3
4
5
6
class PreparedData(
  val users: RDD[(String, User)],
  val items: RDD[(String, Item)],
  val rateEvents: RDD[RateEvent] // MODIFIED
) extends Serializable

ALSAlgorithm.scala

Modify train() method to train with rate event.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  def train(sc: SparkContext, data: PreparedData): ECommModel = {
    require(!data.rateEvents.take(1).isEmpty, // MODIFIED
      s"rateEvents in PreparedData cannot be empty." + // MODIFIED
      " Please check if DataSource generates TrainingData" +
      " and Preprator generates PreparedData correctly.")

    ...

    val mllibRatings = data.rateEvents // MODIFIED
      .map { r =>
        ...

        ((uindex, iindex), (r.rating,r.t)) //MODIFIED
      }.filter { case ((u, i), v) =>
        // keep events with valid user and item index
        (u != -1) && (i != -1)
      }
      .reduceByKey { case (v1, v2) => // MODIFIED
        // if a user may rate same item with different value at different times,
        // use the latest value for this case.
        // Can remove this reduceByKey() if no need to support this case.
        val (rating1, t1) = v1
        val (rating2, t2) = v2
        // keep the latest value
        if (t1 > t2) v1 else v2
      }
      .map { case ((u, i), (rating, t)) => // MODIFIED
        // MLlibRating requires integer index for user and item
        MLlibRating(u, i, rating) // MODIFIED
      }
      .cache()

    ...

  }

Modify train() method to use ALS.trainImplicit():

Change the following from:

1
2
3
4
5
6
7
8
9
10
11
12
    ...

    val m = ALS.trainImplicit(
      ratings = mllibRatings,
      rank = ap.rank,
      iterations = ap.numIterations,
      lambda = ap.lambda,
      blocks = -1,
      alpha = 1.0,
      seed = seed)
    ...

to:

1
2
3
4
5
6
7
8
9
10
11
    ...

    val m = ALS.train( // MODIFIED
      ratings = mllibRatings,
      rank = ap.rank,
      iterations = ap.numIterations,
      lambda = ap.lambda,
      blocks = -1,
      seed = seed)
    ...

That's it! Now your engine can train model with rate events.