PredictionIO's DASE architecture brings the separation-of-concerns design principle to predictive engine development. DASE stands for the following components of an engine:
- Data - includes Data Source and Data Preparator
- Algorithm(s)
- Serving
- Evaluator
Let's look at the code and see how you can customize the engine you built from the Lead Scoring Engine Template.
The Engine Design
As you can see from the Quick Start, MyLeadScoring takes a JSON prediction query, e.g. '{ "landingPageId" : "example.com/page9", "referrerId" : "referrer10.com", "browser": "Firefox" }' , and return a JSON predicted result. In MyLeadScoring/src/main/scala/Engine.scala, the Query
case class defines the format of such query:
1 2 3 4 5 | case class Query( landingPageId: String, referrerId: String, browser: String ) extends Serializable |
The PredictedResult
case class defines the format of predicted result, such as
1 | {"score":0.7466666666666667} |
with:
1 2 3 | case class PredictedResult( score: Double ) extends Serializable |
Finally, LeadScoringEngine
is the Engine Factory that defines the components this engine will use: Data Source, Data Preparator, Algorithm(s) and Serving components.
1 2 3 4 5 6 7 8 9 | object LeadScoringEngine extends IEngineFactory { def apply() = { new Engine( classOf[DataSource], classOf[Preparator], Map("randomforest" -> classOf[RFAlgorithm]), classOf[Serving]) } } |
Each DASE component of the LeadScoringEngine
will be explained below.
By default, Spark's MLlib RandomForest algorithm is used.
Data
In the DASE architecture, data is prepared by 2 components sequentially: DataSource and DataPreparator. They take data from the data store and prepare them for Algorithm.
Data Source
In MyLeadScoring/src/main/scala/DataSource.scala, the readTraining
method of class DataSource
reads and selects data from the Event Store (data store of the Event Server). It returns TrainingData
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | class DataSource(val dsp: DataSourceParams) extends PDataSource[TrainingData, EmptyEvaluationInfo, Query, EmptyActualResult] { @transient lazy val logger = Logger[this.type] override def readTraining(sc: SparkContext): TrainingData = { val viewPage: RDD[(String, Event)] = PEventStore.find( appName = dsp.appName, entityType = Some("user"), eventNames = Some(Seq("view")), // targetEntityType is optional field of an event. targetEntityType = Some(Some("page")))(sc) // PEventStore.find() returns RDD[Event] .map { event => val sessionId = try { event.properties.get[String]("sessionId") } catch { case e: Exception => { logger.error(s"Cannot get sessionId from event ${event}. ${e}.") throw e } } (sessionId, event) } val buyItem: RDD[(String, Event)] = PEventStore.find( appName = dsp.appName, entityType = Some("user"), eventNames = Some(Seq("buy")), // targetEntityType is optional field of an event. targetEntityType = Some(Some("item")))(sc) // PEventStore.find() returns RDD[Event] .map { event => val sessionId = try { event.properties.get[String]("sessionId") } catch { case e: Exception => { logger.error(s"Cannot get sessionId from event ${event}. ${e}.") throw e } } (sessionId, event) } val session: RDD[Session] = viewPage.cogroup(buyItem) .map { case (sessionId, (viewIter, buyIter)) => // the first view event of the session is the landing event val landing = viewIter.reduce{ (a, b) => if (a.eventTime.isBefore(b.eventTime)) a else b } // any buy after landing val buy = buyIter.filter( b => b.eventTime.isAfter(landing.eventTime)) .nonEmpty try { new Session( landingPageId = landing.targetEntityId.get, referrerId = landing.properties.getOrElse[String]("referrerId", ""), browser = landing.properties.getOrElse[String]("browser", ""), buy = buy ) } catch { case e: Exception => { logger.error(s"Cannot create session data from ${landing}. ${e}.") throw e } } }.cache() new TrainingData(session) } } |
PredictionIO automatically loads the parameters of datasource specified in MyLeadScoring/engine.json, including appName, to dsp
.
In engine.json:
1 2 3 4 5 6 7 8 9 | { ... "datasource": { "params" : { "appName": "MyApp1" } }, ... } |
In readTraining()
, PEventStore
is an object which provides function to access data that is collected by PredictionIO Event Server.
This Lead Scoring Engine Template requires "view" and "buy" events with sessionId
in event property.
PEventStore.find(...)
specifies the events that you want to read. In this case, "user view page" and "user buy item" events are read and then each is mapped to tuple of (sessionId, event). The event are then "cogrouped" by sessionId to find out the information in the session, such as first page view (landing page view), and whether the user converts (buy event), to create a RDD of Session as TrainingData:
1 2 3 4 5 6 7 8 9 10 11 | case class Session( landingPageId: String, referrerId: String, browser: String, buy: Boolean // buy or not ) extends Serializable class TrainingData( val session: RDD[Session] ) extends Serializable |
PredictionIO then passes the returned TrainingData
object to Data Preparator.
Data Preparator
In MyLeadScoring/src/main/scala/Preparator.scala, the prepare
method of class Preparator
takes TrainingData
as its input and performs any necessary feature selection and data processing tasks. At the end, it returns PreparedData
which should contain the data Algorithm needs.
In this template, prepare
will select the features from the Session object and convert them to the data required by the MLlib's RandomForest algorithm.
The PreparedData
is defined as:
1 2 3 4 5 | class PreparedData( val labeledPoints: RDD[LabeledPoint], val featureIndex: Map[String, Int], val featureCategoricalIntMap: Map[String, Map[String, Int]] ) extends Serializable |
The LabeledPoint
class is defined in Spark MLlib and it's required for the RandomForest Algorithm. The featureIndex
is a Map of feature name to the position index in the feature vector. featureCategoricalIntMap
is a Map of categorical feature name to the Map of categorical value map for this feature.
By default, the feature used for classification is "landingPage", "referrer" and "browser". Since these features contain categorical values, we need to create a map of categorical values to the integer values for the algorithm to use.
For example, if the feature "landingPage" can be any of the following values: "page1", "page2", "page3", "page4". We can create a categorical Int value Map, such as:
1 2 3 4 5 6 | Map( "page1" -> 0, "page2" -> 1, "page3" -> 2, "page4" -> 3 ) |
Instead of manually create such Map, a helper method createCategoricalIntMap()
is defined in Prepraator.scala for this purpose.
Each labeledPoint
is a label and a feature vector. The element index of the vector for the corresponding feature is defined by featureIndex
Map. By default, it's defined as
1 2 3 4 5 | val featureIndex = Map( "landingPage" -> 0, "referrer" -> 1, "browser" -> 2 ) |
which means that index 0 of the feature vector is the "landingPage" feature, index 1 is "referrer" feature, and so on.
The prepare()
of the Preparator
class first finds out all possible categorical values for the features and create a categorical Int map. Then it converts to the Session
object to the LabeledPoint
by creating the feature vector and the label. In this case, the label is 1 if there is any conversion and 0 if there is no conversion:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | class Preparator extends PPreparator[TrainingData, PreparedData] { ... def prepare(sc: SparkContext, td: TrainingData): PreparedData = { // find out all values of the each feature val landingValues = td.session.map(_.landingPageId).distinct.collect val referrerValues = td.session.map(_.referrerId).distinct.collect val browserValues = td.session.map(_.browser).distinct.collect // map feature value to integer for each categorical feature val featureCategoricalIntMap = Map( "landingPage" -> createCategoricalIntMap(landingValues, ""), "referrer" -> createCategoricalIntMap(referrerValues, ""), "browser" -> createCategoricalIntMap(browserValues, "") ) // index position of each feature in the vector val featureIndex = Map( "landingPage" -> 0, "referrer" -> 1, "browser" -> 2 ) // inject some default to cover default cases val defaults = Seq( new Session( landingPageId = "", referrerId = "", browser = "", buy = false ), new Session( landingPageId = "", referrerId = "", browser = "", buy = true )) val defaultRDD = sc.parallelize(defaults) val sessionRDD = td.session.union(defaultRDD) val labeledPoints: RDD[LabeledPoint] = sessionRDD.map { session => logger.debug(s"${session}") val label = if (session.buy) 1.0 else 0.0 val feature = new Array[Double](featureIndex.size) feature(featureIndex("landingPage")) = featureCategoricalIntMap("landingPage")(session.landingPageId).toDouble feature(featureIndex("referrer")) = featureCategoricalIntMap("referrer")(session.referrerId).toDouble feature(featureIndex("browser")) = featureCategoricalIntMap("browser")(session.browser).toDouble LabeledPoint(label, Vectors.dense(feature)) }.cache() logger.debug(s"labelelPoints count: ${labeledPoints.count()}") new PreparedData( labeledPoints = labeledPoints, featureIndex = featureIndex, featureCategoricalIntMap = featureCategoricalIntMap) } } |
PredictionIO passes the returned PreparedData
object to Algorithm's train
function.
Algorithm
In MyLeadScoring/src/main/scala/ALSAlgorithm.scala, the two methods of the algorithm class are train
and predict
. train
is responsible for training the predictive model; predict
is responsible for using this model to make prediction.
The default algorithm is Spark's MLlib RandomForest algorithm.
Algorithm parameters
The Algorithm takes the following parameters, as defined by the AlgorithmParams
case class:
1 2 3 4 5 6 7 8 | case class RFAlgorithmParams( numTrees: Int, featureSubsetStrategy: String, impurity: String, maxDepth: Int, maxBins: Int, seed: Option[Int] ) extends Params |
You can find more description of the parameters in MLlib's RandomForest documentation and Decision Tree documentation.
The values of these parameters can be specified in algorithms of MyLeadScoring/engine.json:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | { ... "algorithms": [ { "name": "randomforest", "params": { "numClasses": 3, "numTrees": 5, "featureSubsetStrategy": "auto", "impurity": "variance", "maxDepth": 4, "maxBins": 100, "seed" : 12345 } } ] ... } |
PredictionIO will automatically loads these values into the constructor of the RFAlgorithm
class.
1 2 3 4 | class RFAlgorithm(val ap: RFAlgorithmParams) extends P2LAlgorithm[PreparedData, RFModel, Query, PredictedResult] { ... } |
train(...)
train
is called when you run pio train to train a predictive model.
The algorithm first generates the categoricalFeaturesInfo
which is required by the MLlib. This indicates how many categorical values for each categorical features. Then it calls RandomForest.trainRegressor()
to train a RandomForestModel
to predict the probability that the user may convert.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | def train(sc: SparkContext, pd: PreparedData): RFModel = { val categoricalFeaturesInfo = pd.featureCategoricalIntMap .map { case (f, m) => (pd.featureIndex(f), m.size) } logger.info(s"categoricalFeaturesInfo: ${categoricalFeaturesInfo}") // use random seed if seed is not specified val seed = ap.seed.getOrElse(scala.util.Random.nextInt()) val forestModel: RandomForestModel = RandomForest.trainRegressor( input = pd.labeledPoints, categoricalFeaturesInfo = categoricalFeaturesInfo, numTrees = ap.numTrees, featureSubsetStrategy = ap.featureSubsetStrategy, impurity = ap.impurity, maxDepth = ap.maxDepth, maxBins = ap.maxBins, seed = seed) new RFModel( forest = forestModel, featureIndex = pd.featureIndex, featureCategoricalIntMap = pd.featureCategoricalIntMap ) } |
PredictionIO will automatically store the returned model after training.
The RFModel
stores the RandomForestModel
, and the featureIndex
and featureCategoricalIntMap
:
1 2 3 4 5 6 7 | class RFModel( val forest: RandomForestModel, val featureIndex: Map[String, Int], val featureCategoricalIntMap: Map[String, Map[String, Int]] ) extends Serializable { ... } |
predict(...)
predict
is called when you send a JSON query to http://localhost:8000/queries.json. PredictionIO converts the query, such as '{ "landingPageId" : "example.com/page9", "referrerId" : "referrer10.com", "browser": "Firefox" }' to the Query
class you defined previously in Engine.scala
.
The predict()
function does the following:
- convert the Query to the required feature vector input
- use the
RandomForestModel
to predict the probability of conversion given this feature.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ... def predict(model: RFModel, query: Query): PredictedResult = { val featureIndex = model.featureIndex val featureCategoricalIntMap = model.featureCategoricalIntMap val landingPageId = query.landingPageId val referrerId = query.referrerId val browser = query.browser // look up categorical feature Int for landingPageId val landingFeature = lookupCategoricalInt( featureCategoricalIntMap = featureCategoricalIntMap, feature = "landingPage", value = landingPageId, default = "" ).toDouble // look up categorical feature Int for referrerId val referrerFeature = lookupCategoricalInt( featureCategoricalIntMap = featureCategoricalIntMap, feature = "referrer", value = referrerId, default = "" ).toDouble // look up categorical feature Int for brwoser val browserFeature = lookupCategoricalInt( featureCategoricalIntMap = featureCategoricalIntMap, feature = "browser", value = browser, default = "" ).toDouble // create feature Array val feature = new Array[Double](model.featureIndex.size) feature(featureIndex("landingPage")) = landingFeature feature(featureIndex("referrer")) = referrerFeature feature(featureIndex("browser")) = browserFeature val score = model.forest.predict(Vectors.dense(feature)) new PredictedResult(score) } ... |
PredictionIO passes the returned PredictedResult
object to Serving.
Serving
The serve
method of class Serving
processes predicted result. It is also responsible for combining multiple predicted results into one if you have more than one predictive model. Serving then returns the final predicted result. PredictionIO will convert it to a JSON response automatically.
In MyLeadScoring/src/main/scala/Serving.scala,
1 2 3 4 5 6 7 8 9 10 | class Serving extends LServing[Query, PredictedResult] { @transient lazy val logger = Logger[this.type] override def serve(query: Query, predictedResults: Seq[PredictedResult]): PredictedResult = { predictedResults.head } } |
When you send a JSON query to http://localhost:8000/queries.json, PredictedResult
from all models will be passed to serve
as a sequence, i.e. Seq[PredictedResult]
.