Class

org.apache.predictionio.e2.engine

CategoricalNaiveBayesModel

Related Doc: package engine

Permalink

case class CategoricalNaiveBayesModel(priors: Map[String, Double], likelihoods: Map[String, Array[Map[String, Double]]]) extends Serializable with Product

Model for naive Bayes classifiers with categorical variables.

priors

log prior probabilities

likelihoods

log likelihood probabilities

Linear Supertypes
Product, Equals, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CategoricalNaiveBayesModel
  2. Product
  3. Equals
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CategoricalNaiveBayesModel(priors: Map[String, Double], likelihoods: Map[String, Array[Map[String, Double]]])

    Permalink

    priors

    log prior probabilities

    likelihoods

    log likelihood probabilities

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. val featureCount: Int

    Permalink
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  11. val likelihoods: Map[String, Array[Map[String, Double]]]

    Permalink

    log likelihood probabilities

  12. def logScore(point: LabeledPoint, defaultLikelihood: (Seq[Double]) ⇒ Double = ls => Double.NegativeInfinity): Option[Double]

    Permalink

    Calculate the log score of having the given features and label

    Calculate the log score of having the given features and label

    point

    label and features

    defaultLikelihood

    a function that calculates the likelihood when a feature value is not present. The input to the function is the other feature value likelihoods.

    returns

    log score when label is present. None otherwise.

  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. def predict(features: Array[String]): String

    Permalink

    Return the label that yields the highest score

    Return the label that yields the highest score

    features

    features for classification

  17. val priors: Map[String, Double]

    Permalink

    log prior probabilities

  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped