Class

org.apache.predictionio.e2.engine

MarkovChainModel

Related Doc: package engine

Permalink

case class MarkovChainModel(transitionVectors: RDD[(Int, SparseVector)], n: Int) extends Product with Serializable

Markov Chain model

transitionVectors

transition vectors

n

top N used to construct the model

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MarkovChainModel
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MarkovChainModel(transitionVectors: RDD[(Int, SparseVector)], n: Int)

    Permalink

    transitionVectors

    transition vectors

    n

    top N used to construct the model

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  8. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  9. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  10. val n: Int

    Permalink

    top N used to construct the model

  11. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  13. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. def predict(currentState: Seq[Double]): Seq[Double]

    Permalink

    Calculate the probabilities of the next state

    Calculate the probabilities of the next state

    currentState

    probabilities of the current state

  15. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  16. val transitionVectors: RDD[(Int, SparseVector)]

    Permalink

    transition vectors

  17. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped